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Two-dimensional microwave propagation is experimentally studied in strongly scattering and absorbing
random media. The results are compared with adapted theories of Genack, Ferrari, and Kaveh, as well as with
classical diffusion theory. The diffusion constants and propagation velocities are determined. Most metallic or
semiconductor system’s localization effects, if they exist, are so weak that a classical description of the system
is appropriate within measuring resolution.@S1063-651X~96!05310-X#

PACS number~s!: 03.40.Kf, 41.20.Jb, 72.15.Ru

I. INTRODUCTION

Propagation of electromagnetic waves in random media
has achieved a large amount of interest in the last decade~for
a review see@1,2#!. The investigation of weak and strong
localization with light and microwaves as well as the diffus-
ing velocity, i.e., the velocity connecting the diffusion con-
stantD and the mean-free-pathl , are of major importance.
Understanding of these characteristics in the case of electro-
magnetic waves will support analog work on electrons,
where many more side effects~Coulomb interaction,
electron-electron-interaction, etc.! have to be considered,
which can cover the pure localization effects~review in @3#!.

II. EXPERIMENTAL SETUP

The experiments were carried out with microwaves in the
frequency ranges of@20–24 GHz# and @36–40 GHz#. The
microwaves were confined in the space between two qua-
dratic aluminum plates of 60 cm-length of side~see Fig. 1!.
The plates were about 1.6 mm apart. So even for the hightest
frequency of 40 GHz the vacuum wavelength is more than a
factor of 4 larger than the plates’ distance of 1.6 mm. This
implies the electric field of the microwaves to be perpendicu-
lar to the plates and the microwaves will propagate parallel
to the plates, i.e., the experimental setup presents a two-
dimensional guide.

Metallic disks ~the scatterers! are placed randomly be-
tween the plates. They have a height of 1.6 mm and a diam-
eter of 19.3 mm, about the same order of magnitude as the
wavelengths. Since the electric contacts between the disks
and the plates are not ideal and the conductivity of the disks
and the aluminum plates is finite, the guiding system will
have dissipative losses.

The border of~the space between! the plates is alterna-
tively left open or closed with aluminum foil to get a mea-
sure for the influence of the border. In the open case there are
additional losses in consequence of radiation into the envi-
ronment, whereas in the closed case the microwaves are re-
flected back. The microwaves are coupled into the two-
dimensional system and detected via antennae probes. The
latter reach between the plates through holes in the upper
plate ~see Fig. 1!.

The holes are discontinuities and also scatter the micro-
waves, but since they are only about a tenth of the disks and

about a third of the smallest wavelength, their influence is
neglected further on. The two antennae probes are connected
to the ports of a so-called test set, which allows, in combi-
nation with a network analyzer, a microwave source and a
standard calibration technique~TRM calibration, cf.@4#!, to
measure the transmitted microwaves vectorially, i.e., in am-
plitude and phase~dynamic range.90 dB, i.e., nine decades
in energy!. In particular this allows the direct measurement
of the group velocity and the autocorrelation function of the
electric field, as well as to Fourier transform into time do-
main. The investigated distances between the antennae are 4,
6, 14, 24, and 34 cm. The antennae are placed as near to the
center of the plates as possible in order to maximize the
distance to the edge and to minimize its influence on the
measurement.

The scatterers are placed randomly at surface filling fac-
tors of 10%, 20%, 25%, 30%, 35%, and 40%. For each of
these filling factors and both frequency ranges there are pre-
pared five random configurations of scatterers without alumi-
num foil at the edge and one random configuration with alu-
minum foil at the edge. And for each of these configurations
the transmission is measured for the five antennae distances.

FIG. 1. The experimental setup consists of two quadratic alumi-
num plates of 60 cm length of side. On the lower one the metallic
scatterers are placed randomly. The upper one has holes for the
antennae, which are built of coaxial wires, with slightly longer inner
conductors. The main instruments are shown schematically in the
box: computer, network analyzer, microwave source,~so-called!
test set.
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Each frequency range consists of 801 frequency points, 5
MHz apart. So for the Fourier transformed data we get a time
range of 200 ns with a resolution of 0.25 ns.

III. RESULTS

In the following subsections we present the experimental
data for the absorption timetabs, the diffusion constant in the
classical diffusion pictureDcl , the group velocityvg , the
velocity of the center of gravityvs , the center of gravity time
tS , and the autocorrelation functionGE. These values are
averages over each frequency range, and in the case of open
edge over five configurations.

A. Energy-decay rate

The energy-decay rate~reciprocal absorption time! 1/tabs
for each configuration is determined via Fourier transform of

the transmitted electric field, into the time domain and fitting
the decaying part of the intensity to an exponential function
of the form I 0 exp~2t/tabs!. An example is shown in Fig. 2.
This tabs is an implicit average over the frequency range of
the Fourier transform. The damping of each frequency com-
ponent depends strongly on its intensity distribution inside of
each configuration, since the losses are caused mainly by
currents in the metal plates and by radiation at the edges.

In Fig. 3 the energy-decay rate is shown as a function of
filling factor of scattering centers for the two frequency
ranges with open and with metallic reflecting edge. The val-
ues are averages over the five different antennae distances.
For the open edge the values seem to be nearly independent
of the filling factor. But for the metallic reflecting edge the
losses get stronger with increasing filling factor and come
close to the open edge case for 25% filling factor. So the
independency for the open-edge case is the consequence of
two effects, the losses at the scatterers and the losses due to
radiation at the edge. The first one increases with the filling
factor and the latter one gets weaker with increasing filling
factor, since less energy reaches the edge due to increased

FIG. 2. Typical Fourier transformed data for fitting the energy-
decay rate of a measurement in the frequency range@20–24 GHz#
with 20% filling factor and 14 cm antenna distance. The dotted line
shows the assumed input pulse normalized to the total transmitted
intensity. The offset from zero time is due to run time in the antenna
wires.

FIG. 3. The energy-decay rate~reciprocal absorption time! vs
the filling factor for both frequency ranges with open and~metallic!
closed edge. The values are averages over each frequency range,
over antennae distances, and in the case of open edge over five
configurations. The average errors were determined to 0.011/ns for
the open-edge data and 0.025/ns for the closed-edge data.

FIG. 4. Mean transmitted intensity@}N(x)# as function of an-
tenna distance for the frequency range@20–24 GHz# in the open-
edge case~averaged over five configurations and normalized to the
4-cm values!. The frequency range@36–40 GHz# has a similar be-
havior, not shown here. The average errors are about the symbol
size.

FIG. 5. Diffusion constant vs filling factor for both frequency
ranges.
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scattering and absorption inside the medium. These two ef-
fects compensate each other and lead to nearly no depen-
dence of the absorption time on the filling factor for the
open-edge case~in the used experimental setup!. Conse-
quently the losses due to the scatterers itself are best repre-
sented by the energy-decay rate for the closed edge case.
This rate will be used further on for calculations.

B. Diffusion constant in the particle picture

To determine the diffusion constant in the particle picture
we make the following assumptions:~a! the microwaves dif-
fuse like particles~random walk, no interference!, ~b! the
edge is neglected~infinite medium!, and~c! the absorption is
uniform across the medium, with the absorption time found
in the closed-edge case. From the diffusion equation
dN/dt52N/tabs1DclDN, with N the number density of
particles~here the energy density of microwaves!, t the time,
Dcl the ~classical! diffusion constant, andtabs the absorption
time, one obtains the following solution forN in two dimen-
sions in the steady state:N(x)5c1I 0(x)1c2K0(x).
x[r /~Dcltabs!

1/2 is the normalized distance from the source
~antenna!, where r is the real distance from the source,c1
and c2 are integration constants, andI 0(x) and K0(x) are
modified Bessel functions of zeroth order and first or second
kind, respectively. Since limx→`I 0(x)5` the integration
constantc1 has to be zero for an infinite medium without
reflecting edges. So for fitting to experimental data~see Fig.
4! and assuming an infinite sample there are only two param-
eters left: the integration constantc2 and the product of
tabsDcl . From the latter one and with the knowledge oftabs
from the Fourier transformed data we obtainDcl . The values
are shown in Fig. 5 as a function of the filling factor. They
decrease from about 100 cm2/ns for 10% filling factor to
about 8 cm2/ns for 40% for both frequency ranges. The 10%
values are too large due to the influence of the edge~in-
creased losses!.

With this diffusion constant the diffusion velocity is
vD52Dcl/l with mean free pathl in two dimensions. Until
1991 it had been widely expected that the phase velocity for
vD would be found, but since the work of van Albadaet al.
@5# the energy transport velocityvE is considered, which
should account for time delays due to resonances in the scat-
tering process. As there is no way to measure the mean free
path with our setup directly, we have carried out a computer
simulation, i.e., we put a particle randomly into the sample
and let it move forward until it hits a scatterer. Particle di-
ameters, half the average wavelengths~this is the cutoff
wavelength in rectangular wave guides! of the investigated
frequency ranges are chosen~1.36 and 0.79 cm!. The results
are shown in Fig. 6. With this data the diffusion velocities
are determined. They range from about 1.3c0 to 0.4c0 ~c0 is
the vacuum velocity of light!, for the two frequency ranges
and six filling factors. They decrease with increasing filling

factor and are higher for the upper-frequency range. For 10%
filling factor the velocity is higher thanc0 due to the influ-
ence of the edge~compare the values of the diffusion con-
stant!.

C. Group velocity

Since our setup is capable of measuring vectorially, we
directly find the center-of-gravity timetS[dw/dv, with w
the phase shift~modulo 2p! during transmission andv[2pn
the angular frequency. Plotting the center-of-gravity time
against antennae distance will directly show the group veloc-
ity vg as the reverse slope. For diffusing particles one would
normally expect the center-of-gravity time to be proportional
to the square of the antennae distance, but as absorption
takes place the longer paths are stronger attenuated than the
shorter ones and we get a linear dependence for long enough
times: t50.5 tabs ~0.51r / l abs! for r@ l abs ( l abs[ADcltabs;
more details are given in Sec. III E and@7#!. Group velocities
determined by this procedure are shown in Table I as a func-
tion of the filling factor.

D. Velocity of the center of gravity

The velocity of the center of gravityvs is determined
from the data in the time domain. The times are weighted
with the transmitted intensity at that time and then averaged.
For the velocity of the center of gravityvs one gets nearly
the same values as for the group velocity. Table II showsvs
as a function of filling factor.

E. Center of gravity time

As mentioned above the center-of-gravity time is linearly
dependent on the antennae distance for long enough times.

FIG. 6. Simulated values for the mean free path as a function of
the filling factor. The extension of the diffusing particle is taken to
be the half wavelength of the middle frequency of each frequency
range.

TABLE I. Group velocity as a function of the scatterer filling factor in units of the vacuum velocity of light.

Filling factor ~%! 10 20 25 30 35 40

20–24 GHz~units of c0! 0.4360.04 0.2860.02 0.2860.02 0.2460.01 0.2360.01 0.2360.01
36–40 GHz~units of c0! 0.4060.04 0.3060.02 0.2760.02 0.2660.02 0.2660.02 0.2060.01
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For shorter times the behavior is different. To calculate the
center-of-gravity time one has to take the average of the
times for the different paths on which a particle can diffuse
the distance between the two antennae weighted with its
probability.

tS~r !5
*0

`tp~r ,t !dt

*0
`p~r ,t !dt

,

with p(r ,t)5(4pDt)2d/2 exp@2r 2/(4Dt)#exp~2t/tabs! the
probability density ind dimensions to diffuse in timet on a
path between two points~antennae! which are a distancer
apart. Substitutingx[r /~Dtabs! and further transformations
lead to

tS~x!50.5xtabsI12d/2~x!/I2d/2~x!,

with

In~x![E
1

`

@~z2Az221!n11

1~z1Az221!n11#Az22121 exp~2xz!dz.

Simple solutions are available in one and three dimensions:
tS,d51(x)5tabs~11x!/2 and tS,d53(x)5tabsx/2. For two di-
mensions we have simpler formulas only in the extremal
casesx→0 and x→`: tS,d52(x→0)5tabs/~2 ln 2/xg! and
tS,d52(x→`)5tabs~0.51x!/2 with g[eC, C the Euler con-
stant~0.577 216...!. For nonextremal values ofx the integrals
have to be numerically solved in two dimensions.

The results are displayed together with the experimental
data in Fig. 7. For small distances the experiment yields too
high values for the center-of-gravity time, but for larger dis-
tances the data fit better to the theoretical curve. The cause

for the behavior at low values ofx, i.e., r! l abs, could be the
failing of the diffusion equation for distances in the order of
the mean-free-path~no statistical independent scattering
events!. The statistical character of particle motion gets lost
and the transfer from one antenna to the other is dominated
by some kind of cavity~resonator! buildup by the surround-
ing scatterers. So the center-of-gravity time stays above
some positive value, even for closest antennae and does not
approach zero as expected for ideal diffusive propagation.

F. Autocorrelation function and model of Genack

Until now we have neglected interference effects, i.e., the
wave character in the propagation of microwaves. The
implementation of it will be done in the following. Using a
path summation ansatz, as shown by Genack in@6#, we cal-
culate the autocorrelation function of the electric field and
compare it with measured data. Usually the intensity auto-
correlation function is calculated, since most published ex-
periments were not able to measure vectorially, which is nec-
essary to determine the electric field autocorrelation
function. But since our setup measures vectorially we can
directly compare with the electric field autocorrelation func-
tion.

The ansatz is to write the electric field received by one
antenna in the steady state as the sum of the contributions of
the differents paths leading to this antenna,

E~n!5(
a

p~a!exp@ iF~a,n!#

with p~a! the real probability amplitude on patha, so that
the configurational average of(a:s,sa,s1dsp

2(a) equates
the probability for path lengths in the range ofs and
s1ds: P(s)ds. And P(s) again is taken from the diffu-
sion picture, neglecting the wave character.F~a,n!, the
phase, is divided into a part that depends onn and a part that
is caused from scattering and should not depend on
n: F~a,n!52psan/c1F8~a!. With this assumption
the autocorrelation function, defined asGE~Dn!
[RêE(n)E* ~n1Dn!& is calculated to

GE~Dn!}E
0

`

e21/zz2d/2e2Az cos~2pBz!dz

with dimensionality d, A[r 2/~4Dtabs!, and B5B(Dn)
[Dn/(4D). So the autocorrelation function is only depen-
dent on the two dimensionless parametersA andB, and one
can calculate the half-width of the autocorrelation function
for comparison with experiment. In the range of 0.01,A
,100 one gets approximately

D5~2863!r 2dn~2.2760.05!tabs
~1.2760.05!

FIG. 7. Double logarithmic plot of normalized center-of-gravity
time for diffusion vs normalized antennae distance. The continuous
line is the theoretical curve for two dimensions, the crosses are the
experimental data, withtabsandD from Secs. III A and III B.

TABLE II. Velocity of the center of gravity as a function of the scatterer filling factor in units of the vacuum velocity of light.

Filling factor ~%! 10 20 25 30 35 40

20–24 GHz~units of c0! 0.4260.05 0.3060.02 0.2560.02 0.2360.01 0.2060.01 0.1460.01
36–40 GHz~units of c0! 0.4660.06 0.3260.03 0.3060.02 0.2460.02 0.2060.01 0.1960.01
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with the half-width of the autocorrelation functiondn. So for
samples with the same diffusion constant and same absorp-
tion time ~same filling factor! the half-width should approxi-
mately be inversely proportional to the antennae distance.
But though our experiments have antennae distances ranging
from 4 to 34 cm, the half-width only changes less than a
factor of 2. If one tries to calculate the diffusion constant
with the above equation it looks even worse. For example, in
the case of a filling factor of 30% and the frequency range of
20–24 GHz the values forD reach from 0.13 cm2/ns forr54
cm to 5.2 cm2/ns for r534 cm. This discrepancy indicates
that the ansatz of Genack cannot be applied to our experi-
ment or the used assumptions are too restrictive. From the
pure particle diffusion picture we getDcl510 cm2/ns ~see
Sec. III B!. This is also in contrast to the values of the auto-
correlation function by at least a factor of 2. The following
points may be worth theoretical reconsideration:~a! P(s)
is taken from the particle diffusion picture,~b! the diffusion
velocity is independent of frequency, and~c! F8~a! does not
depend on frequency.

G. Model of Ferrari

A further model that tries to incorporate the wave charac-
ter of the electromagnetic radiation into its propagation de-
scription comes from Ferrari@8#. He finds the frequency dis-
tanceDn between intensity maxima for a three-dimensional
model to be equal to half of the reciprocal transmission time
T through the sample:Dn50.5/T. Further he calculatesT
from a one-dimensional diffusion equation under consider-
ation of absorption and getsDn50.5D ~l abs

221p2 L22!, with
L the system size andl abs the absorption length
(5ADtabs). To get a measure for the frequency distance
between intensity maxima one can take the full width at half
maximum ~FWHM! of the transmitted intensity~as a func-
tion of frequency!. This value results from the autocorrela-
tion function of the electric field~with frequency!. Inserting
the experimental values for the FWHM of the autocorrela-
tion function and the energy-decay-rate results in diffusion
constants that strongly depend on antennae distance~@0.013
cm2/ns; 0.019 cm2/ns# for r54 cm and@0.27 cm2/ns; 0.79
cm2/ns# for r534 cm, depending on filling factor also! and
which have values that are below some reasonable minimum
values~assuming the mean-free-pathl.1 cm and diffusion
velocity c.0.1c0!. The values are shown in Fig. 8 as the
area labeled ‘‘Ferrari.’’

H. Model of Kaveh

Another model that incorporates the wave character into
the diffusion picture was published by Kaveh@9#. He calcu-
lates the probability of a diffusing wave packet to hit his own
path again~the width of the wave packet is assumed to be the
central wavelengthl!. So he getsD50.5cl @120.5l l21p22

ln(L/ l )#. In this caseL is the minimum of system size and
ADtw

with tw the time in which the phase information of the
wave gets lost~phase coherence time, which is for micro-
wave experiments usually so large that it can be neglected!.
This formula is analogous to the ones found in the electronic
case ~see, e.g.,@10,11#!. To incorporate the influence of
losses into this formula~which are present in our experi-
ments! one has to consider that they reduce the probability

for long paths and so lessen the interference parts. Appar-
ently, the losses have, in this model, the same influence on
the diffusion constant as the phase coherence time. So one
could redefineL to be the minimum of the system size and
the absorption lengthl abs[ADtabs

~neglecting the phase co-
herence time!. Since the system size is 60 cm andl absranges
from about 3 cm to about 12 cm~experimental values from
the classical diffusion model! one can substituteL by l abs.
Further we takel to be the vacuum wavelength of the
middles of the frequency ranges and the diffusion velocity to
be the vacuum velocity of light, as one would have taken at
the time of Kaveh’s paper. A short calculation shows that the
correction term~due to interferences! to the classical diffu-
sion constant is less than 10% and can~under consideration
of the width of the frequency ranges and the roughness of the
mean-free-path simulation! be neglected in the following.
What is left is the classical diffusion constant with a diffu-
sion velocity ofc0. Inserting the simulated mean-free-path
values leads to diffusion constants that are about a factor of
2–2.5 larger than the experimental values of our first classi-
cal model~which did not require any special values for the
diffusion velocity!. These diffusion constants are also shown
in Fig. 8 as the lines. They do not depend on antennae dis-
tance and are in a reasonable range~in contrast to the former
two nonclassical models of Genack and Ferrari!. Further-
more, we achieve better agreement to the pure classical
model if we substitute the vacuum velocity~which is used as
the value for the diffusion velocity in the Kaveh model! by a

FIG. 8. Logarithmic plot of diffusion constants calculated from
the different models against filling factor for both frequency ranges.
The areas represent the ranges of the values in the models of Gen-
ack and Ferrari, where the values increase from the lower boundary
to the upper boundary with increasing antennae distance. The tri-
angles show the values of the classical diffusion model~,, @20–
24 GHz#; n, @36–40 GHz#!. The lines show the values corre-
sponding to the Kaveh model~lower line, @20–24 GHz#; upper
line, @36–40 GHz#!. The dashed line is a plausibility limit~l.1
cm, c.0.1c0!.
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value of about 0.4c0, which is an energy transport velocity
between the scatterers as proposed by van Albadaet al. @5#.

IV. SUMMARY

We have used a classical diffusion model as well as
adapted models of Genack, Ferrari, and Kaveh to describe
our experimental results for the propagation of microwaves
between absorbing scattering centers in two dimensions. The
diameters of the scattering centers were of the same order of
magnitude as the wavelengths of the microwaves. The mod-
els of Genack and Ferrari could not describe our experimen-

tal values properly, but the classical model and the model of
Kaveh has lead to reasonable results. The classical model
and the model of Kaveh could be brought to good mutual
agreement by inserting a value of about 0.4c0 into the diffu-
sion velocity in the Kaveh model instead ofc0, supporting
ideas of van Albadaet al. of an energy transport velocity
between the scatterers as the effective diffusion velocity.
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