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Electromagnetic scattering in two-dimensional dissipative systems without localization
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Two-dimensional microwave propagation is experimentally studied in strongly scattering and absorbing
random media. The results are compared with adapted theories of Genack, Ferrari, and Kaveh, as well as with
classical diffusion theory. The diffusion constants and propagation velocities are determined. Most metallic or
semiconductor system’s localization effects, if they exist, are so weak that a classical description of the system
is appropriate within measuring resolutid®1063-651X96)05310-X]

PACS numbeis): 03.40.Kf, 41.20.Jb, 72.15.Ru

I. INTRODUCTION about a third of the smallest wavelength, their influence is
neglected further on. The two antennae probes are connected
Propagation of electromagnetic waves in random medi#&o the ports of a so-called test set, which allows, in combi-
has achieved a large amount of interest in the last dedade nation with a network analyzer, a microwave source and a
a review sed1,2]). The investigation of weak and strong standard calibration technig&RM calibration, cf.[4]), to
localization with light and microwaves as well as the diffus- measure the transmitted microwaves vectorially, i.e., in am-
ing velocity, i.e., the velocity connecting the diffusion con- plitude and phas&ynamic range>90 dB, i.e., nine decades
stantD and the mean-free-path are of major importance. in energy. In particular this allows the direct measurement
Understanding of these characteristics in the case of electr@f the group velocity and the autocorrelation function of the
magnetic waves will support analog work on electrons electric field, as well as to Fourier transform into time do-
where many more side effect$Coulomb interaction, main. The investigated distances between the antennae are 4,
electron-electron-interaction, etchave to be considered, 6, 14, 24, and 34 cm. The antennae are placed as near to the
which can cover the pure localization effeéteview in[3]). center of the plates as possible in order to maximize the
distance to the edge and to minimize its influence on the
measurement.
The scatterers are placed randomly at surface filling fac-
The experiments were carried out with microwaves in thefors of 10%, 20%, 25%, 30%, 35%, and 40%. For each of

frequency ranges of20—24 GH2 and[36—40 GHZ. The these filling factors and both frequency ranges there are pre-
microwaves were confined in the space between two quapared five random configurations of scatterers without alumi-
dratic aluminum plates of 60 cm-length of sitkee Fig. 1. num foil at the edge and one random configuration with alu-
The plates were about 1.6 mm apart. So even for the highte§tinum foil at the edge. And for each of these configurations
frequency of 40 GHz the vacuum wavelength is more than 4he transmission is measured for the five antennae distances.
factor of 4 larger than the plates’ distance of 1.6 mm. This

implies the electric field of the microwaves to be perpendicu-

lar to the plates and the microwaves will propagate parallel o
to the plates, i.e., the experimental setup presents a two- & & Emitter- and
dimensional guide. gt //Detecmf-f’fobes

Metallic disks (the scatterejsare placed randomly be-
tween the plates. They have a height of 1.6 mm and a diam-
eter of 19.3 mm, about the same order of magnitude as the
wavelengths. Since the electric contacts between the disks
and the plates are not ideal and the conductivity of the disks
and the aluminum plates is finite, the guiding system will
have dissipative losses.

The border of(the space betwegrthe plates is alterna-
tively left open or closed with aluminum foil to get a mea-
sure for the influence of the border. In the open case there are
additional losses in consequence of radiation into the envi-
ronment, whereas in the closed case the microwaves are re- i 1. The experimental setup consists of two quadratic alumi-
flected back. The microwaves are coupled into the twoyyum plates of 60 cm length of side. On the lower one the metallic
dimensional system and detected via antennae probes. TBgatterers are placed randomly. The upper one has holes for the
latter reach between the plates through holes in the uppeihtennae, which are built of coaxial wires, with slightly longer inner
plate (see Fig. 1 conductors. The main instruments are shown schematically in the

The holes are discontinuities and also scatter the microsox: computer, network analyzer, microwave soul@®-called
waves, but since they are only about a tenth of the disks angst set.

Il. EXPERIMENTAL SETUP

60cm
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FIG. 2. Typical Fourier transformed data for fitting the energy- k. 4. Mean transmitted intensifyN(x)] as function of an-
decay rate of a measurement in the frequency r§8@e24 GHz2 tenna distance for the frequency rari@®—24 GH3 in the open-
with 20% filling factor and 14 cm antenna distance. The dotted ”needge caséaveraged over five configurations and normalized to the
shows the assumed input pulse normalized to the total transmittegi_cm values The frequency rangk86—40 GH3 has a similar be-

intensity. The offset from zero time is due to run time in the antenna, svior. not shown here. The average errors are about the symbol
wires. i
size.

Each frequency range consists of 801 frequency points, ge transmitted electric field, into the time domain and fitting
MHz apart. So for the Fourier transformed data we get a timgne decaying part of the intensity to an exponential function

range of 200 ns with a resolution of 0.25 ns. of the form |, exp(—t/7,,). An example is shown in Fig. 2.
This 7, is an implicit average over the frequency range of
lll. RESULTS the Fourier transform. The damping of each frequency com-

aponent depends strongly on its intensity distribution inside of
each configuration, since the losses are caused mainly by
currents in the metal plates and by radiation at the edges.
In Fig. 3 the energy-decay rate is shown as a function of

In the following subsections we present the experiment
data for the absorption timgy,, the diffusion constant in the
classical diffusion pictureD, the group velocityv, the

velocity of the center of gravity ¢, the center of gravity time flling fact ‘ fteri i for the two f
ts, and the autocorrelation functioB®. These values are fiing factor of scattéring centers for the two irequency

averages over each frequency range, and in the case of opgarpges with open and with m'etalhlc reflecting edge. The val-
edge over five configurations. ues are averages over the five different antennae distances.

For the open edge the values seem to be nearly independent
of the filling factor. But for the metallic reflecting edge the
losses get stronger with increasing filling factor and come
The energy-decay rat@eciprocal absorption timel/r,,;  close to the open edge case for 25% filling factor. So the
for each configuration is determined via Fourier transform ofindependency for the open-edge case is the consequence of
two effects, the losses at the scatterers and the losses due to
radiation at the edge. The first one increases with the filling
factor and the latter one gets weaker with increasing filling

A. Energy-decay rate

0.8 T T T T T

) T
& 0.7 F * é 4 factor, since less energy reaches the edge due to increased
i
o 0.6} ¢ & v & .
= A
s 05} v - ’g 160 ‘ T T T
® 04 A - o140 v : 20—-24 GHz, open -
b 0.3 L 8100l A : 36-40 GHz, open |
° Y v : 20—-24GHz, open L Vv : 20-24 GHz, closed
% 02| A : 36-40GHz, open <100 & A : 36-40 GHz, closed -
& Vv : 20-24GHz, closed g v
g 0.1} A : 36-40GHz, closed - + 80 .
® 0.0 i ] 1 ] I 1 ] g 60 |- v N

10 15 20 25 30 35 40 5 a0l i

tilling factor (%) e 2
g 20 ¥ . a -

FIG. 3. The energy-decay rateeciprocal absorption timevs ] 10 20 30 40

the filling factor for both frequency ranges with open dmtallic) tilling factor (%)

closed edge. The values are averages over each frequency range,

over antennae distances, and in the case of open edge over five

configurations. The average errors were determined to 0.011/ns for FIG. 5. Diffusion constant vs filling factor for both frequency
the open-edge data and 0.025/ns for the closed-edge data. ranges.
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TABLE I. Group velocity as a function of the scatterer filling factor in units of the vacuum velocity of light.

Filling factor (%) 10 20 25 30 35 40
20-24 GHz(units of cq) 0.43+0.04 0.28:0.02 0.28-0.02 0.24-0.01 0.23:0.01 0.23:0.01
36—40 GHz(units ofcy) 0.40+£0.04 0.3G:0.02 0.270.02 0.26:£0.02 0.26£0.02 0.26:0.01

scattering and absorption inside the medium. These two efactor and are higher for the upper-frequency range. For 10%
fects compensate each other and lead to nearly no depefilling factor the velocity is higher thag, due to the influ-
dence of the absorption time on the filling factor for the ence of the edgécompare the values of the diffusion con-
open-edge caséin the used experimental sejupConse- stani.

qguently the losses due to the scatterers itself are best repre-

sented by the energy-decay rate for the closed edge case. C. Group velocity

This rate will be used further on for calculations. Since our setup is capable of measuring vectorially, we

directly find the center-of-gravity timés=d¢/dw, with ¢
the phase shiffmodulo 27) during transmission an@d=2mv

To determine the diffusion constant in the particle picturethe angular frequency. Plotting the center-of-gravity time
we make the following assumption&) the microwaves dif- against antennae distance will directly show the group veloc-
fuse like particles(random walk, no interferenge(b) the ity v4 as the reverse slope. For diffusing particles one would
edge is neglecte@nfinite medium, and(c) the absorption is normally expect the center-of-gravity time to be proportional
uniform across the medium, with the absorption time foundto the square of the antennae distance, but as absorption
in the closed-edge case. From the diffusion equatioriakes place the longer paths are stronger attenuated than the
dN/dt=—N/7,,s+D,4AN, with N the number density of shorter ones and we get a linear dependence for long enough
particles(here the energy density of microwaygsthe time, times: t=0.5 75 (0.5+r/1,9 for r>1,c (Iap= VD ciTans
D the(classical diffusion constant, and,,the absorption more details are given in Sec. lll E afid]). Group velocities
time, one obtains the following solution fdt in two dimen-  determined by this procedure are shown in Table I as a func-
sions in the steady stateN(x)=c;lo(x)+cKo(x).  tion of the filling factor.
x=r/(Dy7ad"? is the normalized distance from the source
(antenng, wherer is the real distance from the sourag, D. Velocity of the center of gravity
and c, are integration constants, amg(x) and Kq(x) are
modified Bessel functions of zeroth order and first or secon(ijro
kind, respectively. Since lig,.l4(X)= the integration

B. Diffusion constant in the particle picture

The velocity of the center of gravity, is determined
m the data in the time domain. The times are weighted
with the transmitted intensity at that time and then averaged.

constantc, has to be zero for an infinite medium without For the velocity of the center of gravity, one gets nearly
flecti . So for fitti i I Fig. 'S
reflecting edges. So for fitting to experimental detee Fig the same values as for the group velocity. Table Il shows

4) and assuming an infinite sample there are only two param- ; -
eters left: the integration constan} and the product of as a function of filling factor.

T - From the latter one and with the knowledge mgf; o

from the Fourier transformed data we obt&lig . The values E. Center of gravity time

are shown in Fig. 5 as a function of the filling factor. They ~ As mentioned above the center-of-gravity time is linearly
decrease from about 100 éms for 10% filling factor to ~ dependent on the antennae distance for long enough times.
about 8 criyns for 40% for both frequency ranges. The 10%

values are too large due to the influence of the e@ige

creased losses 10 T T T T T T T
With this diffusion constant the diffusion velocity is ) A
a . . . . . Esal : 36-40GHz |
vp=2D/l with mean free path in two dimensions. Until &L A v : 20—24GHz
1991 it had been widely expected that the phase velocity for 5 v
vp would be found, but since the work of van Albaetgal. g 6 7
[5] the energy transport velocityg is considered, which o
should account for time delays due to resonances in the scat- E 4 A 1
tering process. As there is no way to measure the mean free g Vo oA
path with our setup directly, we have carried out a computer s 2| v 6 o .
simulation, i.e., we put a particle randomly into the sample e ©
and let it move forward until it hits a scatterer. Particle di- 0 L L : 1 1 i :
ameters, half the average wavelengtlisis is the cutoff 5 10 15 20 25 30 35 40 45
wavelength in rectangular wave guidesf the investigated filling factor (%)

frequency ranges are chos@n36 and 0.79 cin The results

are shown in Fig. 6. With this data the diffusion velocities  FIG. 6. Simulated values for the mean free path as a function of
are determined. They range from aboutch.® 0.4, (Cois  the filling factor. The extension of the diffusing particle is taken to
the vacuum velocity of light for the two frequency ranges be the half wavelength of the middle frequency of each frequency
and six filling factors. They decrease with increasing filling range.
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TABLE Il. Velocity of the center of gravity as a function of the scatterer filling factor in units of the vacuum velocity of light.

Filling factor (%) 10 20 25 30 35 40
20—-24 GHz(units of cq) 0.42+0.05 0.306:0.02 0.25-0.02 0.23:0.01 0.26-0.01 0.14-0.01
36—40 GHz(units of cq) 0.46x0.06 0.32£0.03 0.36:0.02 0.24r0.02 0.26:0.01 0.19:0.01

For shorter times the behavior is different. To calculate thdor the behavior at low values of, i.e.,r <l ,,s, could be the

center-of-gravity time one has to take the average of thdailing of the diffusion equation for distances in the order of
times for the different paths on which a particle can diffusethe mean-free-pathino statistical independent scattering
the distance between the two antennae weighted with itevents. The statistical character of particle motion gets lost

probability. and the transfer from one antenna to the other is dominated
by some kind of cavityresonator buildup by the surround-
_ Jotp(r,tdt ing scatterers. So the center-of-gravity time stays above
ts(r)= [op(r,t)dt’ some positive value, even for closest antennae and does not

approach zero as expected for ideal diffusive propagation.
with p(r,t)=(47Dt) 92 exd —r?/(4Dt)]Jexp(—t/7y9 the
probability density ind dimensions to diffuse in timeon a
path between two point&antennagwhich are a distance . ) )
apart. Substitutingc=r/(D7,,J and further transformations Until now we have neglected interference effects, i.e., the
lead to wave character in the propagation of microwaves. The
implementation of it will be done in the following. Using a
ts(X) = 0.5 1gpd1 — 42X/ Z_g;o(X), path summation ansatz, as shown by Genadl6jnwe cal-
culate the autocorrelation function of the electric field and
compare it with measured data. Usually the intensity auto-
" correlation function is calculated, since most published ex-
In(X)Ej [(z— \/Efl)nﬂ periments were not able to measure vectorially, which is nec-
1 essary to determine the electric field autocorrelation
function. But since our setup measures vectorially we can
directly compare with the electric field autocorrelation func-

Simple solutions are available in one and three dimensiond!o"- . . i .
tege1(X) =Tapd 1HX)/2 andts g_5(X) =7px/2. For two di- The ansatz is to write the electric field received by one
,d= al ,d= al .

mensions we have simpler formulas only in the extremafntenna in the steady state as thg sum of the contributions of
casesx—0 andx—: tgy_o(x—0)=7pd(2 In 2k) and the differents paths leading to this antenna,
ts g 2(X—%) =7,,d0.5+x)/2 with y=e®, C the Euler con-
stant(0.577 216.). For nonextremal values afthe integrals E(v)=2, p(a)exdi®(a,v)]
have to be numerically solved in two dimensions. «a

The results are displayed together with the experimental
data in Fig. 7. For small distances the experiment yields todVith p(e) the real probability amplitude on pat so that
high values for the center-of-gravity time, but for larger dis-the configurational average & ,.c<s <s:qsP”(@) equates
tances the data fit better to the theoretical curve. The causke probability for path lengths in the range sf and
s+ds: P(s)ds. And P(s) again is taken from the diffu-
sion picture, neglecting the wave charactdr(a,v), the
phase, is divided into a part that dependsv@and a part that
is caused from scattering and should not depend on
v. ®(ay)=27ms,v/ic+d'(a). With this assumption
the autocorrelation function, defined asGE(Av)
=RegE(v)E* (v+Av)) is calculated to

F. Autocorrelation function and model of Genack

with

+(z+VZ2—1)""1]2— 171 exp(— x2)dz.

—_
o

(o]

GE(Av)x f e V277 W2e=AZ coq 2 7Bz)dz
0

-1 , . with dimensionality d, A=r?/(4Dr,,), and B=B(Av)
—1 0 1 =Av/(4D). So the autocorrelation function is only depen-
10 10 10 . .
normalized antenna distance /1, dent on the two dimensionless paramet&randB, and one
can calculate the half-width of the autocorrelation function

—_ _ _ for comparison with experiment. In the range of G:0%
FIG. 7. Double logarithmic plot of normalized center-of-gravity <100 or?e gets approxinﬁately 9

time for diffusion vs normalized antennae distance. The continuous
line is the theoretical curve for two dimensions, the crosses are the

) ) ' _ 2 o (2.27+0.05 (1.27+0.05
experimental data, with,,sandD from Secs. Il A and Il B. D=(28%3)r 51! Tabs

norm. c. o. g. time ty/7 .
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with the half-width of the autocorrelation functiaiv. So for
samples with the same diffusion constant and same absorp-
tion time (same filling factoy the half-width should approxi-
mately be inversely proportional to the antennae distance.
But though our experiments have antennae distances ranging
from 4 to 34 cm, the half-width only changes less than a
factor of 2. If one tries to calculate the diffusion constant
with the above equation it looks even worse. For example, in
the case of a filling factor of 30% and the frequency range of
20—24 GHz the values fd reach from 0.13 cAins forr =4

cm to 5.2 cni/ns forr=34 cm. This discrepancy indicates
that the ansatz of Genack cannot be applied to our experi-
ment or the used assumptions are too restrictive. From the
pure particle diffusion picture we gd&d,=10 cnf/ns (see

Genack
k
Sec. Il B). This is also in contrast to the values of the auto-

q 4cm
107" L \ ]
correlation function by at least a factor of 2. The following

points may be worth theoretical reconsideratiofia) P(s) 4om  Ferrari
is taken from the particle diffusion picturé) the diffusion -2 T ]
velocity is independent of frequency, a(@ ®'(«) does not
depend on frequency.

10°

classical 2
diffusion Vv A
v

2
diffusion constant (cm /ns)
o)

]
1

1 1 1 1

10 20 30 40
filling factor (%)

G. Model of Ferrari

A further model that tries to incorporate the wave charac- FIG. 8. Logarithmic plot of diffusion constants calculated from
ter of the electromagnetic radiation into its propagation dethe different models against filling factor for both frequency ranges.
scription comes from Ferraf8]. He finds the frequency dis- The areas represent the ranges of the values in the models of Gen-
tanceAv between intensity maxima for a three-dimensionalack and Ferrari, where the values increase from the lower boundary
model to be equal to half of the reciprocal transmission timeo the upper boundary with increasing antennae distance. The tri-
T through the sample: Av=0.5/T. Further he calculate$ angles show the values of the classical diffusion m¢¥&! [20—
from a one-dimensional diffusion equation under consider24 GHZ; A, [36-40 GH3Z). The lines show the values corre-
ation of absorption and getsv=0.5D (I ;%+#° L~?), with ~ sponding to the Kaveh modelower line, [20-24 GHZ; upper
L the System size and'abs the absorption |ength Iine, [36—40 GHZ) The dashed line is a pIaUSIblllty |Im(l>1
(=D 7y). To get a measure for the frequency distance®™ ¢>0.1¢o).
between intensity maxima one can take the full width at half .
maximum (FWHM) of the transmitted intensityas a func- for long paths and so Igsseln the interference p.arts. Appar-
tion of frequency. This value results from the autocorrela- ently,_ thellosses have, in this model, the same |_nfluence on
tion function of the electric fieldwith frequency. Inserting the d'ff“S'OT‘ constant as thg 'phase coherence t'm.e' So one
the experimental values for the FWHM of the autocorrela—Could redef!nd_ to be the minimum of th.e system size and
tion function and the energy-decay-rate results in diffusiori’® absorption length,,e=D . _(neglecting the phase co-
constants that strongly depend on antennae distd0d@l3 herence timg Since the system size is 60 cm dpgiranges
cn?/ns; 0.019 crfins] for r=4 cm and[0.27 cnf/ns; 0.79 from about 3 cm to about 12 cexperimental values from
cn?/ng] for r=34 cm, depending on filling factor alsand  the classical diffusion modebne can substituté by | ..
which have values that are below some reasonable minimufurther we takex to be the vacuum wavelength of the
values(assuming the mean-free-patir1 cm and diffusion ~ middles of the frequency ranges and the diffusion velocity to
velocity ¢>0.1c,). The values are shown in Fig. 8 as the be the vacuum velocity of light, as one would have taken at

area labeled “Ferrari.” the time of Kaveh's paper. A short calculation shows that the
correction term(due to interferencego the classical diffu-
H. Model of Kaveh sion constant is less than 10% and ¢ander consideration

, . of the width of the frequency ranges and the roughness of the
Another model that incorporates the wave character 'mc?nean-free-path simulatiorbe neglected in the following.

the diffusion picture was published by Kavgdl. He calcu-  \yhat is left is the classical diffusion constant with a diffu-
lates the.probab.lllty of a diffusing wave packet to hit his own ;g velocity ofc,. Inserting the simulated mean-free-path
path agair{the width of the wave packet is assumegltoitge th&,alues leads to diffusion constants that are about a factor of
central wavelength). So he get®=0.5cl [1-0.5\ " 2-2.5 larger than the experimental values of our first classi-
In(L/1)]. In this caseL is the minimum of system size and ¢4 model(which did not require any special values for the
\/D_QD with 7, the time in which the phase information of the giffusion velocity. These diffusion constants are also shown
wave gets los{phase coherence time, which is for micro- in Fig. 8 as the lines. They do not depend on antennae dis-
wave experiments usually so large that it can be neglé&ctedtance and are in a reasonable rafigecontrast to the former
This formula is analogous to the ones found in the electroni¢two nonclassical models of Genack and FejraFurther-
case(see, e.g.[10,11)). To incorporate the influence of more, we achieve better agreement to the pure classical
losses into this formuldwhich are present in our experi- model if we substitute the vacuum velociyhich is used as
mentg one has to consider that they reduce the probabilitithe value for the diffusion velocity in the Kaveh mogby a
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value of about 0.4y, which is an energy transport velocity tal values properly, but the classical model and the model of
between the scatterers as proposed by van Alleadé [5]. Kaveh has lead to reasonable results. The classical model
and the model of Kaveh could be brought to good mutual
IV. SUMMARY agreement by inserting a value of aboutdy.tto the diffu-
. o sion velocity in the Kaveh model instead of, supporting
We have used a classical diffusion model as well asgeas of van Albadat al. of an energy transport velocity

adapted models of Genack, Ferrari, and Kaveh to describgetween the scatterers as the effective diffusion velocity.
our experimental results for the propagation of microwaves

between absorbing scattering centers in two dimensions. The
diameters of the scattering centers were of the same order of
magnitude as the wavelengths of the microwaves. The mod- We wish to thank V. Gasparian and A. Enders for helpful
els of Genack and Ferrari could not describe our experimendiscussions.
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